Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mahimaidoss Baby Mariyatra, ${ }^{\text {a }}$ * Krishnaswamy

Panchanatheswaran ${ }^{\text {a }}$ and Andres E. Goeta ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India, and ${ }^{\mathbf{b}}$ Department of Chemistry, Durham University, Durham DH1 3LE, England

Correspondence e-mail: panch 45@yahoo.co.in

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.026$
$w R$ factor $=0.058$
Data-to-parameter ratio $=18.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Triphenyl(benzoylmethyl)phosphonium hexabromodicadmate(II): supramolecular aggregation through extensive $\mathbf{C}-\mathbf{H} \cdots \mathrm{Br}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions

In the title phosphonium metalate, $\left(\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{OP}\right)_{2}\left[\mathrm{Cd}_{2} \mathrm{Br}_{6}\right]$, the two methylene H atoms of the cation are involved in $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. These interactions link the cations and the centrosymmetric anions to form rings of graph-set $R_{2}{ }^{2}(9)$ and $R_{2}{ }^{2}(12)$, and form chains along the c axis.

Comment

$\mathrm{Hg}^{\text {II }}$ salts exhibit strong reactivity with benzoylmethylenetriphenylphosphorane (BPPY) to form organometallics (Kalyanasundari et al., 1995, 1999). In order to determine the mode of reactivity of the ylide with a cadmium salt, the reaction between BPPY and $\mathrm{CdBr}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ was carried out. The ${ }^{1} \mathrm{H}$ NMR data in DMSO- d_{6} indicated the formation of a phosphonium derivative and also revealed that it was different from $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PCH}_{2} \mathrm{COC}_{6} \mathrm{H}_{5}\right]^{+} \cdot \mathrm{Br}^{-}$. A single-crystal X-ray diffraction experiment was then performed to obtain the structural details of the new phosphonium derivative, (I).

The results show that centrosymmetric dimers are formed from CdBr_{3} and $\mathrm{Ph}_{3} \mathrm{PCH} 2 \mathrm{COPh}$ units, yielding $\mathrm{Cd}_{2} \mathrm{Br}_{6}{ }^{2-}$ ions in which Cd^{2+} is tetrahedrally coordinated by two terminal and two bridging Br^{-}ions (Fig. 1). The $\mathrm{Cd}_{2} \mathrm{Br}_{6}{ }^{2-}$ ion is interposed between the two phosphonium cations, and the two bridging Br^{-}ions are unsymmetrically bonded to Cd . The $\mathrm{H} 1-\mathrm{C} 1-$ H 2 angle $\left[107.97(1)^{\circ}\right.$] indicates that the angle around the ylidic carbon of the parent ylide [115.3 (4) ${ }^{\circ}$ and $123.0(4)^{\circ}$ corresponding to two non-equivalent molecules in the asymmetric unit; Kalyanasundari et al., 1994] has been reduced because of protonation at the ylidic carbon. The torsion angle $\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1\left[19.1(3)^{\circ}\right]$ is slightly larger than those found in the parent ylide $\left[0.9(8)\right.$ and $\left.-2.2(9)^{\circ}\right]$ and confirms the near cis orientation of the P and O centres. The $\mathrm{P} 1 \cdots \mathrm{O} 1$ distance $[2.918(2) \AA]$ is comparable to that observed in the parent ylide and is significantly shorter than the sum of the van der Waals radii of P and O (3.3 Å; Dunitz, 1979).

The dimeric structure is stabilized mainly by two types of secondary interactions, viz. a $\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$ interaction and a $\mathrm{C} 1-\mathrm{H} 2 \cdots \mathrm{Br} 1$ interaction (Table 2). The former, which links

Received 21 October 2002

 Accepted 1 November 2002 Online 8 November 2002

Figure 1
Displacement ellipsoid plot (30% probability) of (I), showing the centrosymmetric dimers formed by the cations through hydrogen bonding with the anion. H atoms not involved in hydrogen bonding have been omitted for clarity.

Figure 2
Packing plot showing the two main $\mathrm{C}-\mathrm{H}$ interactions forming layers of cations and anions perpendicular to the a axis. H atoms, except for H 1 and H 2 , and the C atoms of the phenyl rings of the triphenylphosphonium fragment have been omitted for clarity.
the cations along the b axis (Fig. 2), can be considered to be strong (Jeffrey, 1997), with the H1…O1 distance being 2.48 (3) \AA and the $\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$ angle 167 (2) ${ }^{\circ}$. The latter, an interaction between H 2 and Br 1 within the asymmetric unit at a distance of $3.584(2) \AA$, is comparable to the corresponding distance in the adduct of CHCl_{3} and $\mathrm{Br}^{-}(3.56 \AA$ in an average of four structures; Steiner, 1998). In conjunction, both interactions link cations and anions along the c axis, forming layers perpendicular to the a axis, as shown in Fig. 2. These layers are linked along the a axis through other weaker $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions, summarized in Table 2. The hydrogen bonding in the ylide $\mathrm{Ph}_{3} \mathrm{PCHPh}$ (Yufit et al., 2000) and in the phosphonium salts (Baby Mariyatra et al., 2002) may arise due to the acidity of the CH or CH_{2} group, respectively.

The phosphonium metalate formation contrasts with the Ccoordination of the BPPY with $\mathrm{Hg}^{\text {II }}$ (Kalyanasundari et al., 1995) and the O-coordination with U^{VI} (Kalyanasundari, 1998). It is, however, comparable to the formation of a tetra-
cholorocobaltate salt formed by the reaction of the same ylide with $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Albanese et al., 1989). The formation of the phosphonium and $\mathrm{Cd}_{2} \mathrm{Br}_{6}{ }^{2-}$ ions can be explained by the initial hydrolysis of CdBr_{2}, forming HBr , with subsequent interaction of a proton and Br^{-}with the ylidic carbon and CdBr_{2}, respectively.

Experimental

The title compound was prepared by the reaction of CdBr_{2} and benzoylmethylenetriphenylphosphorane (BPPY) in methanol in a $1: 1$ ratio. Slow evaporation of the solvent gave twinned crystals. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, p.p.m.): $\delta 6.12\left[d, 2 \mathrm{H},{ }^{2} J(\mathrm{P}-\mathrm{H})=13.2 \mathrm{~Hz}\right], 7.36-8.08(\mathrm{~m}$, 20 H). Diffraction quality crystals of (I) were obtained by recrystallizing these crystals in ethanol.

Crystal data

$\left(\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{OP}\right)_{2}\left[\mathrm{Cd}_{2} \mathrm{Br}_{6}\right]$
$M_{r}=1467.08$
Orthorhombic, Pbcn
$a=25.7075$ (15) \AA
$b=10.7351$ (9) A
$c=18.8469(14) \AA$
$V=5201.2(7) \AA^{3}$
$Z=4$
$D_{x}=1.874 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Bruker SMART 6000 CCD
diffractometer
ω scans
Absorption correction: by
integration (XPREP in
SHELXTL; Bruker, 1998)
$T_{\text {min }}=0.221, T_{\text {max }}=0.531$
30677 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0241 P)^{2}\right. \\
&+2.9606 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.005 \\
& \Delta \rho_{\max }=0.59 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.058$
$S=1.02$
7011 reflections
377 parameters
All H -atom parameters refined

Mo $K \alpha$ radiation
Cell parameters from 736 reflections
$\theta=10.3-20.5^{\circ}$
$\mu=5.53 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Irregular prism, colourless
$0.42 \times 0.28 \times 0.15 \mathrm{~mm}$

7011 independent reflections 5580 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=29.2^{\circ}$
$h=-30 \rightarrow 35$
$k=-14 \rightarrow 14$
$l=-25 \rightarrow 22$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

P1-C11	$1.789(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.484(3)$
$\mathrm{P} 1-\mathrm{C} 31$	$1.790(2)$	$\mathrm{Cd} 1-\mathrm{Br} 3$	$2.5243(4)$
$\mathrm{P} 1-\mathrm{C} 21$	$1.793(2)$	$\mathrm{Cd} 1-\mathrm{Br} 1$	$2.5523(3)$
$\mathrm{P} 1-\mathrm{C} 1$	$1.799(2)$	$\mathrm{Cd} 1-\mathrm{Br} 2^{\mathrm{i}}$	$2.6540(4)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.214(3)$	$\mathrm{Cd} 1-\mathrm{Br} 2$	$2.6791(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.521(3)$		
$\mathrm{C} 11-\mathrm{P} 1-\mathrm{C} 31$	$111.04(11)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$118.5(2)$
$\mathrm{C} 11-\mathrm{P} 1-\mathrm{C} 21$	$105.46(10)$	$\mathrm{Br} 3-\mathrm{Cd} 1-\mathrm{Br} 1$	$112.680(11)$
$\mathrm{C} 31-\mathrm{P} 1-\mathrm{C} 21$	$112.83(10)$	$\mathrm{Br} 3-\mathrm{Cd} 1-\mathrm{Br} 2^{\mathrm{i}}$	$114.298(12)$
$\mathrm{C} 11-\mathrm{P} 1-\mathrm{C} 1$	$106.35(11)$	$\mathrm{Br} 1-\mathrm{Cd} 1-\mathrm{Br} 2^{\mathrm{i}}$	$111.567(11)$
$\mathrm{C} 31-\mathrm{P} 1-\mathrm{C} 1$	$107.74(11)$	$\mathrm{Br} 3-\mathrm{Cd} 1-\mathrm{Br} 2$	$119.626(12)$
$\mathrm{C} 21-\mathrm{P} 1-\mathrm{C} 1$	$113.25(11)$	$\mathrm{Br} 1-\mathrm{Cd} 1-\mathrm{Br} 2$	$104.061(11)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{P} 1$	$113.23(16)$	$\mathrm{Br} 2^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Br} 2$	$92.779(10)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$122.3(2)$	$\mathrm{Cd} 1^{\mathrm{i}}-\mathrm{Br} 2-\mathrm{Cd} 1$	$87.221(10)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$119.2(2)$		
$\mathrm{Br} 3-\mathrm{Cd} 1-\mathrm{Br} 2-\mathrm{Cd} 1^{\mathrm{i}}$	$-120.101(14)$	$\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$19.1(3)$
$\mathrm{Br} 1-\mathrm{Cd} 1-\mathrm{Br} 2-\mathrm{Cd} 1^{\mathrm{i}}$	$113.051(12)$		
Symmetry code: (i) $2-x, 2-y,-z$.			

[^0]Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{ii}}$	$0.94(3)$	$2.48(3)$	$3.405(3)$	$167(2)$
$\mathrm{C} 1-\mathrm{H} 2 \cdots \mathrm{Br} 1$	$0.91(3)$	$2.70(3)$	$3.584(2)$	$166(2)$
$\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{Br}^{\mathrm{i}}$	$0.93(3)$	$3.02(3)$	$3.694(3)$	$131(2)$
$\mathrm{C} 24-\mathrm{H} 24 \cdots \mathrm{Br}^{\mathrm{i}}$	$0.94(2)$	$3.06(3)$	$3.710(2)$	$128.0(19)$
$\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{Br}^{\mathrm{iii}}$	$0.90(3)$	$3.04(3)$	$3.718(3)$	$133(2)$

Symmetry codes: (i) $2-x, 2-y,-z$; (ii) $\frac{3}{2}-x, y-\frac{1}{2}, z$; (iii) $x, 2-y, \frac{1}{2}+z$.

All H atoms were located from difference Fourier maps and their positions and isotropic displacement parameters were refined. The $\mathrm{C}-\mathrm{H}$ bond distances range from 0.88 (3) to 0.99 (3) \AA.

Data collection: SMART-NT (Bruker, 1998); cell refinement: SMART-NT; data reduction: SAINT-NT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Bruker, 1998); software used to prepare material for publication: SHELXTL-NT.

References

Albanese, J. A., Staley, D. L., Rheingold, A. L. \& Burmeister, J. L. (1989). Acta Cryst. C45, 1128-1131.
Baby Mariyatra, M., Panchanathewaran, K. \& Goeta, A. E. (2002). Acta Cryst. E58, o807-o809.
Bruker (1998). SMART-NT (Version 5.0), SAINT-NT (Version 5.0) and SHELXTL-NT (Version 5.1). BrukerAXS Inc., Madison, Wisconsin, USA.
Dunitz, J. D. (1979). X-ray Analysis and the Structure of Organic Molecules, p. 339. Ithaca: Cornell University Press.

Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding, p. 12. New York: Oxford University Press.
Kalyanasundari, M. (1998). PhD Thesis, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
Kalyanasundari, M., Panchanatheswaran, K., Parthasarathi, V., Robinson, W. T \& Huo, W. (1994). Acta Cryst. C50, 1738-1741.
Kalyanasundari, M., Panchanatheswaran, K., Parthasarathi, V. \& Robinson, W. T. (1999). Bull. Chem. Soc. Jpn, 72, 33-36.

Kalyanasundari, M., Panchanatheswaran, K., Robinson, W. T. \& Huo, W. (1995). J. Organomet. Chem. 491, 103-109.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Steiner, T. (1998). Acta Cryst. B54, 456-463.
Yufit, D. S., Howard, J. A. K. \& Davidson, M. G. (2000). J. Chem. Soc. Perkin Trans. pp. 249-253.

[^0]: Symmetry code: (i) $2-x, 2-y,-z$.

