metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mahimaidoss Baby Mariyatra,^a* Krishnaswamy Panchanatheswaran^a and Andres E. Goeta^b

^aDepartment of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India, and ^bDepartment of Chemistry, Durham University, Durham DH1 3LE, England

Correspondence e-mail: panch 45@yahoo.co.in

Key indicators

Single-crystal X-ray study T = 120 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.026 wR factor = 0.058 Data-to-parameter ratio = 18.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

fc th

C 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Triphenyl(benzoylmethyl)phosphonium hexabromodicadmate(II): supramolecular aggregation through extensive $C - H \cdots Br$ and $C - H \cdots O$ interactions

In the title phosphonium metalate, $(C_{26}H_{22}OP)_2[Cd_2Br_6]$, the two methylene H atoms of the cation are involved in C-H···Br and C-H···O interactions. These interactions link the cations and the centrosymmetric anions to form rings of graph-set $R_2^2(9)$ and $R_2^2(12)$, and form chains along the *c* axis.

Received 21 October 2002 Accepted 1 November 2002 Online 8 November 2002

Comment

Hg^{II} salts exhibit strong reactivity with benzoylmethylenetriphenylphosphorane (BPPY) to form organometallics (Kalyanasundari *et al.*, 1995, 1999). In order to determine the mode of reactivity of the ylide with a cadmium salt, the reaction between BPPY and CdBr₂·4H₂O was carried out. The ¹H NMR data in DMSO- d_6 indicated the formation of a phosphonium derivative and also revealed that it was different from [(C₆H₅)₃PCH₂COC₆H₅]⁺·Br⁻. A single-crystal X-ray diffraction experiment was then performed to obtain the structural details of the new phosphonium derivative, (I).

The results show that centrosymmetric dimers are formed from CdBr₃ and Ph₃PCH2COPh units, yielding Cd₂Br₆²⁻ ions in which Cd²⁺ is tetrahedrally coordinated by two terminal and two bridging Br^- ions (Fig. 1). The $Cd_2Br_6^{2-}$ ion is interposed between the two phosphonium cations, and the two bridging Br⁻ ions are unsymmetrically bonded to Cd. The H1-C1-H2 angle $[107.97 (1)^{\circ}]$ indicates that the angle around the ylidic carbon of the parent ylide $[115.3 (4)^{\circ} \text{ and } 123.0 (4)^{\circ}$ corresponding to two non-equivalent molecules in the asymmetric unit; Kalyanasundari et al., 1994] has been reduced because of protonation at the ylidic carbon. The torsion angle P1-C1-C2-O1 [19.1 (3)°] is slightly larger than those found in the parent ylide $[0.9 (8) \text{ and } -2.2 (9)^{\circ}]$ and confirms the near cis orientation of the P and O centres. The P1···O1 distance [2.918 (2) Å] is comparable to that observed in the parent ylide and is significantly shorter than the sum of the van der Waals radii of P and O (3.3 Å; Dunitz, 1979).

The dimeric structure is stabilized mainly by two types of secondary interactions, *viz*. a $C1-H1\cdots O1$ interaction and a $C1-H2\cdots Br1$ interaction (Table 2). The former, which links

 $2\sigma(I)$

Figure 1

Displacement ellipsoid plot (30% probability) of (I), showing the centrosymmetric dimers formed by the cations through hydrogen bonding with the anion. H atoms not involved in hydrogen bonding have been omitted for clarity

Figure 2

Packing plot showing the two main C-H interactions forming layers of cations and anions perpendicular to the a axis. H atoms, except for H1 and H2, and the C atoms of the phenyl rings of the triphenylphosphonium fragment have been omitted for clarity.

the cations along the b axis (Fig. 2), can be considered to be strong (Jeffrey, 1997), with the H1···O1 distance being 2.48 (3) Å and the C1-H1 \cdots O1 angle 167 (2) $^{\circ}$. The latter, an interaction between H2 and Br1 within the asymmetric unit at a distance of 3.584(2) Å, is comparable to the corresponding distance in the adduct of CHCl₃ and Br⁻ (3.56 Å in an average of four structures; Steiner, 1998). In conjunction, both interactions link cations and anions along the c axis, forming layers perpendicular to the a axis, as shown in Fig. 2. These layers are linked along the *a* axis through other weaker $C-H\cdots Br$ interactions, summarized in Table 2. The hydrogen bonding in the ylide Ph₃PCHPh (Yufit et al., 2000) and in the phosphonium salts (Baby Mariyatra et al., 2002) may arise due to the acidity of the CH or CH₂ group, respectively.

The phosphonium metalate formation contrasts with the Ccoordination of the BPPY with Hg^{II} (Kalyanasundari *et al.*, 1995) and the O-coordination with U^{VI} (Kalyanasundari, 1998). It is, however, comparable to the formation of a tetra-

cholorocobaltate salt formed by the reaction of the same ylide with CoCl₂·6H₂O (Albanese et al., 1989). The formation of the phosphonium and $Cd_2Br_6^{2-}$ ions can be explained by the initial hydrolysis of CdBr₂, forming HBr, with subsequent interaction of a proton and Br⁻ with the ylidic carbon and CdBr₂, respectively.

Experimental

The title compound was prepared by the reaction of CdBr₂ and benzoylmethylenetriphenylphosphorane (BPPY) in methanol in a 1:1 ratio. Slow evaporation of the solvent gave twinned crystals. ¹H NMR (DMSO- d_6 , p.p.m.): δ 6.12 [d, 2H, $^2J(P-H) = 13.2$ Hz], 7.36–8.08 (m, 20H). Diffraction quality crystals of (I) were obtained by recrystallizing these crystals in ethanol.

Crystal data

Data collectionBruker SMART 6000 CCD diffractometer7011 independent reflections 5580 reflections with $I > 2\sigma($ ω scans ω scans $R_{int} = 0.033$ $\theta_{max} = 29.2^{\circ}$ integration (XPREP in $SHELXTL$; Bruker, 1998) $K = -14 \rightarrow 14$ $T_{min} = 0.221, T_{max} = 0.531$ $I = -25 \rightarrow 22$ 30677 measured reflections	$\begin{array}{l} ({\rm C}_{26}{\rm H}_{22}{\rm OP})_2[{\rm Cd}_2{\rm Br}_6]\\ M_r = 1467.08\\ {\rm Orthorhombic, $Pbcn$}\\ a = 25.7075 (15) {{\rm A}}\\ b = 10.7351 (9) {{\rm A}}\\ c = 18.8469 (14) {{\rm A}}\\ V = 5201.2 (7) {{\rm A}}^3\\ Z = 4\\ D_x = 1.874 \ {\rm Mg \ m}^{-3} \end{array}$	Mo K α radiation Cell parameters from 736 reflections $\theta = 10.3-20.5^{\circ}$ $\mu = 5.53 \text{ mm}^{-1}$ T = 120 (2) K Irregular prism, colourless $0.42 \times 0.28 \times 0.15 \text{ mm}$
Bruker SMART 6000 CCD diffractometer7011 independent reflections 5580 reflections with $I > 2\sigma($ ω scans ω scans $R_{int} = 0.033$ $\theta_{max} = 29.2^{\circ}$ integration (XPREP in $SHELXTL$; Bruker, 1998) $h = -30 \rightarrow 35$ $k = -14 \rightarrow 14$ $I = -25 \rightarrow 22$ 30677 measured reflections $I = -25 \rightarrow 22$	Data collection	
50077 mediated reneembris	Bruker SMART 6000 CCD diffractometer ω scans Absorption correction: by integration (<i>XPREP</i> in <i>SHELXTL</i> ; Bruker, 1998) $T_{min} = 0.221, T_{max} = 0.531$ 30677 measured reflections	7011 independent reflections 5580 reflections with $I > 2\sigma(R_{int} = 0.033)$ $\theta_{max} = 29.2^{\circ}$ $h = -30 \rightarrow 35$ $k = -14 \rightarrow 14$ $l = -25 \rightarrow 22$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0241P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.026$	+ 2.9606P]
$wR(F^2) = 0.058$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.005$
7011 reflections	$\Delta \rho_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}^{-3}$
377 parameters	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$
All H-atom parameters refined	

Table 1

Selected geometric parameters (Å, °).

P1-C11	1.789 (2)	C2-C3	1.484 (3)
P1-C31	1.790 (2)	Cd1-Br3	2.5243 (4)
P1-C21	1.793 (2)	Cd1-Br1	2.5523 (3)
P1-C1	1.799 (2)	Cd1-Br2 ⁱ	2.6540 (4)
O1-C2	1.214 (3)	Cd1-Br2	2.6791 (3)
C1-C2	1.521 (3)		. ,
C11-P1-C31	111.04 (11)	C3-C2-C1	118.5 (2)
C11-P1-C21	105.46 (10)	Br3-Cd1-Br1	112.680 (11)
C31-P1-C21	112.83 (10)	Br3-Cd1-Br2i	114.298 (12)
C11-P1-C1	106.35 (11)	Br1-Cd1-Br2 ⁱ	111.567 (11)
C31-P1-C1	107.74 (11)	Br3-Cd1-Br2	119.626 (12)
C21-P1-C1	113.25 (11)	Br1-Cd1-Br2	104.061 (11)
C2-C1-P1	113.23 (16)	Br2 ⁱ -Cd1-Br2	92.779 (10)
O1-C2-C3	122.3 (2)	Cd1 ⁱ -Br2-Cd1	87.221 (10)
O1-C2-C1	119.2 (2)		
Br3-Cd1-Br2-Cd1 ⁱ	-120.101 (14)	P1-C1-C2-O1	19.1 (3)
Br1-Cd1-Br2-Cd1 ¹	113.051 (12)		

Symmetry code: (i) 2 - x, 2 - y, -z.

Table 2	
Hydrogen-bonding geometry (Å, °).	

$D - \mathbf{H} \cdots \mathbf{A}$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$	
C1-H1···O1 ⁱⁱ	0.94 (3)	2.48 (3)	3.405 (3)	167 (2)	
$C1-H2\cdots Br1$	0.91 (3)	2.70 (3)	3.584 (2)	166 (2)	
$C16-H16\cdots Br2^{i}$	0.93 (3)	3.02 (3)	3.694 (3)	131 (2)	
$C24-H24\cdots Br3^{i}$	0.94 (2)	3.06 (3)	3.710(2)	128.0 (19)	
C25−H25···Br2 ⁱⁱⁱ	0.90 (3)	3.04 (3)	3.718 (3)	133 (2)	

Symmetry codes: (i) 2 - x, 2 - y, -z; (ii) $\frac{3}{2} - x$, $y - \frac{1}{2}$, z; (iii) x, 2 - y, $\frac{1}{2} + z$.

All H atoms were located from difference Fourier maps and their positions and isotropic displacement parameters were refined. The C-H bond distances range from 0.88 (3) to 0.99 (3) Å.

Data collection: *SMART-NT* (Bruker, 1998); cell refinement: *SMART-NT*; data reduction: *SAINT-NT* (Bruker, 1998); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL-NT* (Bruker, 1998); software used to prepare material for publication: *SHELXTL-NT*.

References

- Albanese, J. A., Staley, D. L., Rheingold, A. L. & Burmeister, J. L. (1989). Acta Cryst. C45, 1128–1131.
- Baby Mariyatra, M., Panchanathewaran, K. & Goeta, A. E. (2002). Acta Cryst. E58, 0807–0809.

Bruker (1998). SMART-NT (Version 5.0), SAINT-NT (Version 5.0) and SHELXTL-NT (Version 5.1). BrukerAXS Inc., Madison, Wisconsin, USA.

Dunitz, J. D. (1979). X-ray Analysis and the Structure of Organic Molecules, p. 339. Ithaca: Cornell University Press.

Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding, p. 12. New York: Oxford University Press.

Kalyanasundari, M. (1998). PhD Thesis, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.

Kalyanasundari, M., Panchanatheswaran, K., Parthasarathi, V., Robinson, W. T & Huo, W. (1994). Acta Cryst. C50, 1738–1741.

- Kalyanasundari, M., Panchanatheswaran, K., Parthasarathi, V. & Robinson, W. T. (1999). Bull. Chem. Soc. Jpn, 72, 33–36.
- Kalyanasundari, M., Panchanatheswaran, K., Robinson, W. T. & Huo, W. (1995). J. Organomet. Chem. 491, 103–109.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Steiner, T. (1998). Acta Cryst. B54, 456-463.

Yufit, D. S., Howard, J. A. K. & Davidson, M. G. (2000). J. Chem. Soc. Perkin Trans. pp. 249–253.